Image Time Series for near Real Time Airborne Monitoring of Disaster Situations and Traffic Applications

نویسندگان

  • P. Reinartz
  • F. Kurz
  • D. Rosenbaum
  • J. Leitloff
  • G. Palubinskas
چکیده

Near real time monitoring of natural disasters, mass events, and large traffic disasters with airborne optical sensors is a focus of research and development at the German Aerospace Center (DLR). For this purpose, a new airborne camera system was developed named 3K camera system (3K = “3Kopf-Kamera”). Image data are processed onboard on five onboard processing units using data from a real time GPS/IMU system. Processed data are sent to ground via two types of data links, a commercial microwave operating in the S-band. This system is called ARGOS. The data received by the ground antenna are further processed and distributed directly to the ground forces and to different institutions like the ZKI (Center for Satellite Based Crisis Information) and a traffic portal of DLR. The time span between acquisition and reception at the end user is about 5 minutes. Main focus in the current development is the traffic processor, which extracts traffic information like traffic density and vehicle velocity from 3K image sequences. The information from a road database is used for the road and vehicle detection in the georeferenced images. Another application is the thematic mapping of natural disasters like floods, land slides, and damages after earth quakes. The requirements of civil security and rescue forces for a near real time airborne monitoring system were integrated in the first prototype system, which should be ready in the middle of 2009. National cooperation partners are the Federal Office of Civil Protection and Disaster Assistance (BBK) and the Federal Agency for Technical Relief (THW) supplemented by different regional civil security institutions in the two demonstration regions Cologne and Munich. The future plan is to operate a quickly reacting mobile ground station and an airplane on standby for monitoring of natural disasters and mass events. In this paper the relevant parts of the overall system and selected system processes are addressed and described. The experiences made in the flight campaigns of the last years are summarized with focus on the image processing part, e.g. reached accuracies of georeferencing and the traffic processors. 1. AIRBORNE RAPID MAPPING Rapid mapping for natural disasters was long time the domain of satellite images which were processed and distributed by institutions like the ZKI (Center for Satellite Based Crisis Information) at the DLR. Airborne rapid mapping can fill a gap as satellites are fixed to overpass times and are thus not available at any time. Besides, airplanes can be directed flexibly with a high spatial and temporal resolution. Ongoing projects like VABENE (DLR), and SAFER (E.U.) try to fill this gap and enforce the application of airborne rapid mapping in case of natural disasters and mass events. In the projects VABENE and SAFER, airborne rapid mapping systems will be developed and validated together with the national rescue forces and security related forces (BOS). In the VABENE project, a DLR traffic portal will be developed to equip the forces with powerful tools like traffic prognosis and traffic routing supported by the data from the ARGOS rapid mapping system. The development of these systems was in close contact with the national rescue and security related forces. The first prototype of the rapid airborne mapping system should be ready in the middle of 2009. In this paper, an overview of all relevant parts of the airborne rapid mapping system is given and selected system processes are addressed and described in more detail. The experiences made in the flight campaigns of the last years are summarized with focus on the image processing part, e.g. reached accuracies of georeferencing and status of the traffic processors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near Real Time Airborne Monitoring System for Disaster and Traffic Applications

A near real time airborne monitoring system for monitoring of natural disasters, mass events, and large traffic disasters was developed in the last years at the German Aerospace Center (DLR). This system consists of an optical wide-angle camera system (3K system), a SAR sensor, an optical and microwave data downlink, an onboard processing unit and ground processing station with online data tran...

متن کامل

Real Time Airborne Monitoring for Disaster and Traffic Applications

Remote sensing applications like disaster or mass event monitoring need the acquired data and extracted information within a very short time span. Airborne sensors can acquire the data quickly and on-board processing combined with data downlink is the fastest possibility to achieve this requirement. For this purpose, a new low-cost airborne frame camera system has been developed at the German A...

متن کامل

Gpu-based Orthorectification of Digital Airborne Camera Images in Real Time

The usage of airborne camera systems for near real time applications will increase in the near future. This paper purposes a new hardware/software architecture to establish real time computation of images obtained from the DLR wide area airborne 3K-camera system. The main applications of our system are e.g. to monitor automotive traffic, to determine the workload of public road networks during ...

متن کامل

طراحی و پیاده‌سازی سامانۀ بی‌درنگ آشکارسازی و شناسایی پلاک خودرو در تصاویر ویدئویی

An automatic Number Plate Recognition (ANPR) is a popular topic in the field of image processing and is considered from different aspects, since early 90s. There are many challenges in this field, including; fast moving vehicles, different viewing angles and different distances from camera, complex and unpredictable backgrounds, poor quality images, existence of multiple plates in the scene, va...

متن کامل

Detecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems

vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010